Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0296779, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478555

RESUMO

The mitotic spindle is the bipolar, microtubule-based structure that segregates chromosomes at each cell division. Aberrant spindles are frequently observed in cancer cells, but how oncogenic transformation affects spindle mechanics and function, particularly in the mechanical context of solid tumors, remains poorly understood. Here, we constitutively overexpress the oncogene cyclin D1 in human MCF10A cells to probe its effects on spindle architecture and response to compressive force. We find that cyclin D1 overexpression increases the incidence of spindles with extra poles, centrioles, and chromosomes. However, it also protects spindle poles from fracturing under compressive force, a deleterious outcome linked to multipolar cell divisions. Our findings suggest that cyclin D1 overexpression may adapt cells to increased compressive stress, possibly contributing to its prevalence in cancers such as breast cancer by allowing continued proliferation in mechanically challenging environments.


Assuntos
Centrossomo , Ciclina D1 , Humanos , Centríolos , Ciclina D1/genética , Mitose , Oncogenes , Fuso Acromático/genética
2.
Sci Rep ; 14(1): 3694, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355954

RESUMO

Individual cancers are composed of heterogeneous tumor cells with distinct phenotypes and genotypes, with triple negative breast cancers (TNBC) demonstrating the most heterogeneity among breast cancer types. Variability in transcriptional phenotypes could meaningfully limit the efficacy of monotherapies and fuel drug resistance, although to an unknown extent. To determine if transcriptional differences between tumor cells lead to differential drug responses we performed single cell RNA-seq on cell line and PDX models of breast cancer revealing cell subpopulations in states associated with resistance to standard-of-care therapies. We found that TNBC models contained a subpopulation in an inflamed cellular state, often also present in human breast cancer samples. Inflamed cells display evidence of heightened cGAS/STING signaling which we demonstrate is sufficient to cause tumor cell resistance to chemotherapy. Accordingly, inflamed cells were enriched in human tumors taken after neoadjuvant chemotherapy and associated with early recurrence, highlighting the potential for diverse tumor cell states to promote drug resistance.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Transdução de Sinais , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...